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ABSTRACT 

A regular supply of applicants to Queen's University in Kingston, Ontario is provided by 65 high 
schools. Each high school can be characterized by a series of grading standards which change from 
year to year. To aid admissions decisions, it is desirable to forecast the current year's grading 
standards for all 6.5 high schools using grading standards estimated from past year's data. We 
develop and apply a Bayesian break-point time-series model that generates forecasts which involve 
smoothing across time for each school and smoothing across schools. "Break point" refers to a point 
in time which divides the past into the "old past" and the "recent past" where the yearly observations 
in the recent past are exchangeable with the observations in the year to be forecast. We show that 
this model works fairly well when applied to 11 years of Queen's University data. The model can 
be applied to other data sets with the parallel time-series structure and short history, and can be 
extended in several ways to more complicated structures. 

Une bonne partie de la clientele de I'universitC Queen's (a Kingston, en Ontario) provient chaque 
annCe des mCmes Ccoles secondaires. Le niveau moyen de prCparation des finissants de ces 65 Ccoles 
peut &tre reprCsentC numeriquement par un indice dont la valeur change d'annCe en annCe. Pour 
faciliter l'haluation des dossiers, on dCsirait prkvoir cette valeur pour chacune des Ccoles a partir 
des donnCes des annCes antkrieures. A cette fin, nous avons ClaborC et test6 un modele bayCsien de 
ces series chronologiques d'indices. Les donnCes ont 6th IissCes afin de tenir compte des variations 
dans le temps et entre les Ccoles. Des points de rupture permettant de discerner entre le pass6 rCcent 
et ancien ont Cgalement CtC incorporks au modkle et les donnCes des annCes rCcentes ont CtC 
considerCes comme Cchangeables avec les observations prCdites. Ce modkle donne des rksultats 
acceptables pour les donnCes accumulCes pendant 11  ans par I'universitC Queen's. Il se prCte bien 
aux situations oh l'on a affaire 3 plusieurs petites sCries chronologiques paralleles et il peut Ctre 
gCnCralisC de diverses manikres afin de tenir compte de structures plus compliquCes. 

1. INTRODUCTION 

I .1. The Problem. 

For a number of years, Queen's University in Kingston, Ontario has been interested in 
monitoring the relative grading standards of those high schools which provide a regular 
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supply of applicants. The concern is that the grades of some high schools may be inflated 
relative to those of others. Since Queen's University does not use a standardized ad- 
missions test such as the SAT (Scholastic Aptitude Test), which is required by many 
U.S. universities, decisions are based primarily on high-school grades, and consequently 
differences in the relative grading standards of high schools tend to give unfair advantages 
to students from high schools with lower grading standards. 

In previous work (Rubin and Stroud 1977), a method was introduced for calculating 
relative grading standards from the high-school final year average (HSA) of numerical 
marks and the first-year Queen's average (FYA) of students in a specified set of high 
schools over a sequence of matriculation years. The actual technique, described in the next 
section, is based on a modelling of FYA given HSA, and generates a value for each 
school-year combination in the time span under consideration. These high-school 
standards cannot be calculated for any current applicant, since none of these applicants has 
an FYA score. Our concern here is with extrapolating the past standards of each high 
school one more year, into the year of current applicants. This forecasting work is 
important because, if the forecasts are successful, they provide the university admissions 
office with supplementary information helpful in interpreting the HSAs provided by the 
different high schools. In some cases, this information might be used in deciding whom 
to admit and whom not to admit. 

The collection of relative grading standards, evaluated for each high school over the 
same sequence of matriculation years, comprises what we call a set of parallel time series. 
In this article, we develop a Bayesian model for such data with an unknown break point, 
which incorporates smoothing across parallel time series. Based on this model, described 
in Section 1.3, the forecasted relative grading standard for each school is a weighted 
average of the school's standards in past years, where more recent years always receive 
more weight than more distant years. Such a weighting is intuitively quite attractive, and 
the fact that it results from a formal Bayesian model means that standard errors can be 
attached to the forecasts and that model deficiencies can be assessed. The appeal of our 
method, which provides forecasts using decreasing data-based weights over time, is 
somewhat similar to the appeal of the use of empirical Bayesian methods in variance- 
component models, which provide a way of using the data to obtain smoothed estimates. 

1.2. Relative Grading Standards. 
The relative grading standards, shown in Table 1, were calculated according to the 

method described in Rubin and Stroud (1977), which involves fitting a linear model each 
matriculation year relating the first-year Queen's University average of numerical marks 
(FYA) to the final-year high-school average (HSA), the square of the final-year average, 
and dummy variables representing the various schools in the set. The parameter estimates 
representing the schools are then centered so that their weighted average is zero, the results 
being called the relative grading standards of these schools. The difference between the 
standards of two schools in a given matriculation year equals the difference between the 
estimated expected first-year university averages of students from the two schools having 
the same final year high school average. 

We see from Table 1 that there is a great deal of fluctuation in each school's standard 
over time. For some schools, however, the values are consistently negative, while for 
others they are positive. This finding is important for forecasting. 

Other statistics relevant to the production of Table 1, namely estimated regression 
coefficients, residual mean squares, and numbers of students per school, are described in 
Rubin and Stroud (1984, Appendix C). 
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1.3. The Bayesian Break-Point Model. 

Our method of forecasting current relative grading standards is based on a Bayesian 
"break-point" model, which specifies one distribution for the "old" past and another 
distribution for the "recent" past, where the break point between old and recent must be 
estimated. More specifically, let X,, be the relative grading standard for school s at time 
t ,  s = 1 ,  . . . ,S ,  t = 1, . . . ,T, where the objective is to forecast the current relative 
grading standards Xs,T+ I for s = 1, . . . ,S. The X,, beginning with the unknown break 
point are assumed to follow the familiar linear model underlying a one-way ANOVA 

(analysis of variance), where the groups are the high schools and the grading standards 
within a group are independently and identically distributed replications: for t r k, X,, -
N(p,, u2).  The data before the break point also follow the same model, but with different 
parameter values: for t < k, X,, - N ( ~ ; , U * ~ ) .The set of grading standards to be forecast 
{Xs.T+ I ;  s = 1, . . . ,S) are being modelled as the set consisting of one future observation 
in each group with the same parameter values ( p i ,  . . . ,pS;u2)as the observed data from 
the break point onward. This establishes the simple break-point time-series aspects of our 
model, which generates estimates of current standards that are weighted averages of past 
standards with more weight given to the standards from the recent past. 

Our model also has Bayesian aspects which smooth the estimates across the parallel time 
series. The p, are related by a prior distribution, and the pf are also related by a prior 
distribution; specifically, p, - N(p,, T*) and pf - ~ ( p , * ,T**). In the analysis of the 
Queen's data, po = p,*= 0, but this is not necessary in general. Furthermore, we make 
our analysis fully Bayesian by specifying prior distributions for all parameters k, u2,  u**, 
T ~ ,T * ~ .  Details of these specifications and subsequent derivations of related posterior 
distributions are presented in Section 3. 

1.4. Comments on the Bayesian Model. 

If only one high school were involved, with no obvious trend in time, we would 
consider the average of the "recent" past to be a satisfactory predictor. When the series 
is quite stable in time, the recent past should include the entire history and a reasonable 
predictor would be the average value over this past; if there were an abrupt change three 
years ago, the recent past would include only the past three years of data. Thus, one of 
the major objectives of our analysis is to quantify evidence in the data about the duration 
of the recent past. In so doing, we decide how to trade off the increased bias of prediction 
but decreased variance that arises from going back too far into the past against the reduced 
bias but increased variance that arises from basing predictions on too few observations. 

Since the Queen's data set involves parallel time series at many schools, we consider 
it advantageous to shrink our predictors toward a common value. The purpose of such 
shrinking is to make use of the information in the entire data set to produce estimates at 
particular schools that are less extreme than the original estimates, which were based on 
only a few observations. Sometimes called "borrowing strength", such shrinkage is the 
essential feature of James-Stein estimation, empirical Bayes estimation, and hierarchical 
Bayesian inference, and has become a dominant theme in recent statistical literature; see 
e.g. Mosteller and Wallace (1964), Jackson, Novick, and Thayer (1971), Lindley and 
Smith (1972), Efron and Morris (1975), Rubin (1980), Morris (1983). 

1.5. Outline. 

Section 2 presents results of analyses of the Queen's data. These results indicate that 
our model works reasonably well. For example, the average actual squared forecast error 



TABLE1: Relative grading standards of 65 high schools. 

Year 
School I 2 3 4 5 6 7 
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P O S T E R I O R  M E A N  

-o-o- Z E R O  P R E D I C T O R  

- A D  H O C  WEIGHTED AVERAGE 

YEAR BEING FORECAST 
FIGURE1: Comparison of sums of squared forecast errors for three techniques used for forecasting 
relative grading standards. 

across all schools and years, based on the data from Table 2 shown in Figure 1 ,  is 1 1 %  
less for our technique (posterior means) than for the grand mean (zero) (which is what 
would be used if past data were ignored). 

Section 3 presents the model more formally and includes derivations of relevant results. 
The presentation in Section 4 addresses the propriety of the model's assumptions as 
applied to the Queen's data. Finally, Section 5 discusses generalizations and other ap- 
proaches to this problem. 



TABLE2: Sum of squared forecast errors for forecasting by straight averaging and by the posterior mean, the zero predictor, and the linearly increasing (udhoc) weighted 
average. 

Straight average 

Year Beginning 
being with year Pos. Zero Wted. 

predicted I 2 3 4 5 6 7 8 9 10 Mean Pred. Ave. 

1025 1257 
913 883 

1321 1167 
1245 1202 
1547 131 1 
1099 997 
1986 1580 
1371 1309 
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2. FORECASTS OF RELATIVE GRADING STANDARDS 

2.1. Posterior Predictive Means. 

A Bayesian model can be used to forecast future values, such as grading standards, 
using the posterior predictive distribution of these values. In our model, the posterior 
predictive mean of X,,,,, given p, is simply p,. Thus, the posterior predictive mean of 
X,,,+ I equals the mean of the posterior distribution of p,; this is derived in Section 3 and 
Appendix A. Using the data in Table 1, we can create forecasts using our model for year 
T + 1 from data for years 1,  . . . ,T. To demonstrate the performance of our method, such 
forecasts were made for a range of values of T, corresponding to the use of the technique 
over the years as data accumulated, beginning with a very short history (T = 3) and ending 
with the forecasting of the eleventh year (T = 10). The year-4 forecasts were obtained 
from the first three years' data, the year-5 forecasts were obtained from the first four years' 
data, etc. In the next two subsections, the performance of these forecasts is discussed. 

2.2. Evaluating the Posterior Mean Forecasts. 

Table 2 displays the sum of squared forecast errors (actual minus predicted) over the 65 
schools. The first ten columns of the body of the table give sums of squared errors of point 
predictors defined as averages of the recent past for various fixed starting points in time; 
thus, column 1 shows forecasts based on the entire past, column 2 shows forecasts based 
on the past beginning with year 2, etc. The last three columns show the sum of squared 
forecast errors by three forecast techniques: the posterior mean (the method described 
herein), a forecast of zero grading standard for each school, and an ad hoe weighted 
average technique where the past years 1,2, . . . ,T are simply given the weights 
1 , 2 ,  . . . ,T, respectively. (Figure 1 shows the same information.) In any appropriate 
application of the method of this article, the past data should provide information about 
how the past should be weighted, so that our method should perform better in the long run 
than some general rule where the weights do not depend on the data. Table 2 shows that 
the posterior mean forecast was better than a grand mean (zero) forecast in all eight 
forecasting trials; hence the grading standards do not behave like white noise. Notice, 
however, that a forecast based on only the last year of the data set performed worse than 
the zero forecast six times out of eight. In comparing the posterior mean with the ad hoc 
weighting scheme, the posterior mean did better on five occasions and worse on two 
occasions, with one tie. Table 3 compares the posterior mean, the zero forecast, and the 
ad hoc weighting scheme using the sum of absolute errors instead of sum of squared errors. 
The results are similar. 

2.3. Posterior Predictive Intervals. 

For each year being forecasted (4 through 1 I ) ,  95% prediction intervals were computed 
according to the formula 

predictive mean k 2(predictive variance) f , 

where the predictive mean equals the posterior mean and the predictive variance is given 
by (A.6). Table 4 gives, for each year, the number of actual values that fell below the 
lower prediction limit and the number of actual values that fell above the upper prediction 
limit. These results indicate that these nominal 95% intervals may be safely interpreted for 
these data as 90-95% intervals, a performance which we consider reasonably satisfactory. 
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TABLE3: Sum of absolute errors for forecasting by the posterior 
mean, the zero predictor, and the weighted average. 

Sum of errors 

Year being Post. Zero Wted. 
predicted Mean Pred. Ave. 

TABLE4: Performance of 95% prediction intervals for the next year's 
relative grading standards of 65 schools. 

Actual 
Year being Actual below between Actual above 
predicted lower limit limits upper limit 

It is also useful to note that schools whose grading standards are substantially above or 
below the average (zero) can be identified from the forecasts, which are listed in Rubin 
and Stroud (1984, Table 2). For example, in year 1 1  there are eight schools whose 
predicted standards exceed 2.5 in magnitude. ( A  difference of 2.5 in relative grading 
standards refers to a difference of 2.5 in expected first-year average on a numerical scale 
from 0 to 100.) In all these eight cases, the sign of the actual relative grading standard 
(Table 1) corresponds with the sign of the forecast. In this way, the admissions office can 
identify those schools whose grading standards are the lowest and those whose grading 
standards are the highest. 

3. FORMAL STATEMENT OF MODEL 

3.1. Initial Specifications. 

Let X,, be the value at school s and time t ,  where we have data for s = 1 ,  . . . ,S and 
t = 1 ,  . . . ,T. Our objective is to forecast the S values of X,, for t = T + 1. 

Let k be the first value of t in the "recent" past, so that t = 1, . . . ,k - 1 indexes the 
old past and t = k ,  . . . ,T indexes the recent past. We mean formally by this statement that 
given the vector parameter 8 = ( k ,p:, . . . ,p,*,p, ,  . . . ,ps,u * ~ ,u2),the observations X,, 
for s = 1 ,  . . . ,S and t = 1 ,  . . . ,T are independent with 
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and 

3.2. Adding Bayesian Structure. 

Thus far, the only ties across the S time series are via the common variances a*2and 
a2and the common break point k. With the model ( 3 . 1 )  -( 3 . 2 )  and k known, an obvious 
predictor of X,,+ is 

Because there are many parallel series, however, in order to improve the estimates of each 
X,,,, , by borrowing strength across the series, we use a hierarchical Bayesian model with 
prior distributions on the pTand the p,. The quantities p, for s = 1 ,  . . . ,S are taken to 
be independently and identically distributed with mean po and variance T ~ ;similarly, the 
p: are independently and identically distributed ~ ( p ; ,  T * ~ ) . Here po and p; are known 
(zero in our application), and an asterisk continues to denote a before-break quantity. In 
order to complete a fully Bayesian specification, we need to place a distribution over T * ~ ,  

T ~ ,a*2,a2,and k.  

3.3. The Prior Distribution of the Variances Given the Break Point. 

For convenience, we replace the hyperparameters a2and r2by A and +, where A = 1/a2 
and + = ( 1  + n r 2 / u 2 ) - I ,  with n = T - k + 1. Similarly, we replace a*2and T * ~by A* 
and +*, where A* = 1 / ~ * ~  = with n* = -and +* ( 1  + n * ~ * ~ / u * ~ ) - ' ,  k 1 .  Given k ,  the 
quantities A ,  A*, +, and +* are a priori independent with 

where 

and 

The factors p, and p, refer to before and after the break, respectively. If k = 1 ,  there 
is no break and the factorp, is unity. The priors on A and A* are scaled chi-squared priors 
with vo degrees of freedom, corresponding to scaled inverted chi-squared priors on a2and 
a*2.The prior mean of the precision A is 1 / m o ,  corresponding to mo as a prior estimate 
of a2(and similarly for A * ,  m;, and a * 2 ) .  The form of the transformations from T~ and T * ~  

to + and +*, respectively, and of the priors on + and +*, are based on Strawdennan 
( 1 9 7 1 ) .  

These priors are proper. As vo -,0 and r + 1 ,  the limiting forms are improper and are 

equivalent to the priors used by Box and Tiao ( 1 9 6 8 ;  1 9 7 3 ,  Sections 5.2, 7 . 2 ) .  We do not 

use the improper priors on A and A*,  because they do not yield proper posterior distri- 
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butions when there is only one time period before or after the break. We do not use the 
improper priors on + and +*, because a zero posterior probability on values of k > 1 would 
result when r = 1, because the factor 1 - r in pAwhen k = 1 is much larger than the factor 
(1 - r)' in PAP8 when k > 1. 

3.4. Specifying Hyperparameters in the Prior Distribution of the Variances. 

Lacking specific prior information on the hyperparameters vo,mo,m:, and r, we suggest 
that they be chosen in the manner described in the following paragraphs. Most of these 
choices are dependent on the data. 

Since the prior expectation of + is (1 - r)/(2 - r),  we suggest estimating + from the 
data and solving for r, viz. r = (1 - 2i$)/(l - 4). For the estimate i$, one may use the 
MLE based on the entire set of observed data and a variance-components model with 
known grand mean po;thus 

where MSW = EE(X,, - X,.)' and MSB = TC(X,. - kO)'. However, small values of 
r produce a prior structure that tends to shrink the p.,, too much in the direction of FO, 
without paying sufficient attention to the data. For this reason we suggest a lower bound 
of for r. Thus take 

Note that r will be >; provided $ <f.In the analysis of the Queen's University data, this 
method applied to the first ten years data yielded r = 0.54418, which was used in all eight 
forecasts. 

Concerning the hyperparameters of the prior distributions of A and A*, we suggest using 
vo= 6, because this is the smallest value (i.e., corresponding to the least informative prior) 
that results in finite posterior means and variances when r 2 i. For choosing moand m;, 

Swe suggest mo= E,_ , (XsT-X . T ) 2 / ( ~- l) ,  a between-group mean square based on only 
the final time period, and m; = c:, , (X,, -%.,)'/(s - 1) based on the t = 1 data. If the 
between-group variance is zero (4 = l ) ,  then mois an unbiased estimate of u2;otherwise 
it will tend to overestimate u2.We use this conservative procedure because we wish 
to avoid underestimating variances. When different values of k are combined in the 
final analysis, the information in the data will dominate to yield a reasonable posterior 
distribution of u2. 

3.5. Posterior Distributions Given k. 

Given k, the posterior distributions of u2 and the p., and hence the predictive distribu- 
tions of the s values of Xs,T+ can be found from a standard Bayesian analysis which is I 

very similar to the analysis presented in Box and Tiao (1968; 1973, Section 7.2). The data 
from this analysis, given k, constitute the S X n data matrix of the recent past, and the 
model is the simple one-way layout with S groups and n observations per group. The 
so-called "random effects" version of the model is the one used here, because of the 
normal prior on the p., 

3.6. The Prior Distribution of k. 

As a prior distribution for k over the integers 1,2, . . .,T we suggest, unless circum- 
stances indicate otherwise, the discrete uniform prior with a constant probability of I/T. 
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This was the prior used for the analysis of the Queen's University admission data of 
Section 2. Whatever prior is used for k, this prior, together with the results conditional on 
k which have been derived above, determine the posterior distribution of k, as described 
in Appendix A. In Appendix A it is also explained how to obtain the posterior means and 
variances of the 1 . ~ ~and the predictive variances of the X , , T + ,. 

4. DISCUSSION OF ASSUMPTIONS OF THE MODEL 

4.1. Introduction. 

As with any model applied to real data, there exist important questions concerning the 
propriety of the assumptions. Since our model has complicated structure, it is appropriate 
to discuss why we think the assumptions are reasonable for the Queen's University 
admissions data. 

4.2. One Common Break Point. 

First, we consider the assumption of a single break point k, common to all schools. The 
conditions that determine what we have called grading standards at a particular school tend 
to change from time to time, but there is no guarantee they will have changed only once 
during the period covered by the data. However, because the Bayesian prediction scheme 
using a single unknown break point k produces, before smoothing across schools, a 
weighted average of past data with increasing weights, and because the history is short, 
we feel that the predictive accuracy of the results would not be changed much by incorpo- 
rating more break points, so we have chosen a single break point for simplicity. Likewise, 
we feel that allowing the break point to change from school to school would not improve 
predictions sufficiently to warrant the added complexity. 

4.3. Independent Normal Distributions. 

Regarding the model of independent normal observations before and after the break, the 

normality can be regarded as an expression that the average of the recent past should be 

a reasonable predictor if we knew the break point. The assumption of independence across 

schools is an expression of the idea of exchangeability among schools; such ex-

changeability is usually implied by the notion of the S time series being "parallel". 


4.4. Common Variances. 

Regarding the common variance of u2after the break and the common variance u * ~  
before the break, which represent the variation from year to year of the standards of a given 
school, we note that this variation comes from two sources: actual changes in school 
standards from year to year due to things like variations of curricula, teaching methods, 
and examinations, and the variance of estimation of parameters in the linear model from 
which the school standards are obtained. Although the numbers of students in the various 
schools provide some information about the latter effects, the former effects could be 
determined only from the school standards themselves. Since a model incorporating both 
kinds of effects would be quite complicated, and since separate unknown variances for 
each school would require the estimation of many parameters, we feel that it is appropriate 
to use the common unknown within-group varisnce specified by the model even though 
its estimate will tend to be high for that small collection of schools with relatively large 
numbers of students. 
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4.5. Prior Distributions for p, and p,1 

The normality with zero means of the prior distributions of the I L ~ ,p,;seems appropriate 
here, since the standards for all schools appear symmetrically distributed about their 
central value, which is by definition close to zero; we note also that no schools show up 
as "outliers". 

4.6. Prior Distribution of 4.  
The predictions will depend somewhat on the prior distribution of c$ (or, equivalently, 

of T'), because this prior distribution dictates how much shrinking towards the central 
value p,,, will take place. We feel that a uniform prior on T' [which was used by Leonard 
(1976), and shrinks approximately the same amount as the James-Stein estimator] does not 
create enough shrinkage for the purposes of the present problem. There is a great deal of 
random fluctuation in the data analyzed here, and predictions that are heavily based on 
individual school means with little shrinkage would not be expected to do as well overall 
as predictions with a fair amount of shrinkage toward zero. The family of priors which we 
use has a larger amount of shrinkage, and when 1 5 r < 1, the prior produces minimax 
point estimates of means in the one-way model with known variances u2(Strawderman, 
1971) for n r 5. 

4.7. Prior distribution on k .  

We wish to express prior ignorance of where the break point is, if it exists (k > l ) ,  and 
also allow for the possibility of no break at all (k = 1). We feel that equal prior 
probabilities of all values of k from 1 to T is a reasonable way of expressing this. 

5. GENERALIZATIONS AND EXTENSIONS 

5.1. More General Parallel Time Series. 

The ideas of this article may be applied to other collections of "parallel time series" 
where it is desired to forecast the next value for each series in the collection. Examples 
of parallel time series are not difficult to find, e.g., burglary rates in 20 cities or motor- 
vehicle death rates in 48 states. This kind of data structure is common in the econometric 
literature, where it is known as "pooled cross-sectional and time-series data" (e.g. Grif- 
fiths and Anderson 1982). We expect our model to be most applicable when the number 
of series is between 20 and 100. 

If the series contain obvious time trends, these trends may be estimated and subtracted 
from the series before the beginning of the analysis, as was done with the relative grading 
standards. Sometimes there may not be any obvious way to estimate the grand mean for 
the data set as a whole. We may want to include the grand mean as a hyperparameter, and 
possibly to allow its value to be different after the break from before the break. The theory 
for this formulation is discussed in Appendix B. 

5.2. inclusion of Global Predictor Variables. 

Another possible extension is to the case involving a global external predictor variable, 
available at each point in time. Such an extension follows immediately, in theory at least, 
from the work of this paper together with the results presented in Stroud (1984). The 
predictor could be a useful global predictor, or it could be time itself, allowing each series 
to have its own slope, as well as its own mean. 
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5.3. More Than One Break Point. 

Finally, we mentioned that some sets of parallel time series may cover a sufficiently 
long time span that we may prefer to use only a recent section of the data instead of the 
whole data set, to avoid estimating a break point near the beginning of the data set, when 
a more recent but less marked break point is more relevant to predicting the future. One 
way of determining an appropriate value of T is to make one or more trial runs, the first 
one using all available time periods, and note on each occasion the posterior probabilities, 
and particularly the posterior m ~ d e , ~ o f  k. If, on the first run, this mode is far enough back 
in time that the choice of this k = k as the break point would jeopardize thejetection of 
a more recent and more relevant break point, then the time periods 1 , 2 ,  . . . , k - 1 should 
be deleted for the second run. If the resulting modal break point is still too far back in time, 
then this procedure can be repeated, as often as is necessary. 

5.4. Related Methods. 

A Bayesian treatment of a break point as an unknown parameter in a single time series 
was studied by Smith (1980). For parallel time series, Thisted and Wecker (1981) used 
shrinkage toward a central value but did not utilize a break point, using instead exponential 
smoothing to provide differential weights for past values. A more comprehensive version 
of a correlated-means model which yields differential weights using dynamic linear mod- 
elling is described by West, Harrison, and Migon (1985). So far, results are only available 
for the case of a single time series. 

Swamy and Mehta (1975, 1977) have presented a random-coefficient regression model 
approach to parallel time series, which in principle could be applied to the Queen's 
University data, since HSA is being used as a predictor for FYA. This formulation, 
however, requires the estimation of a large number of parameters whose sampling vari- 
ability is not fully represented in any implied predictive intervals. 

APPENDIX A. CALCULATIONS OF POSTERIOR AND PREDICTIVE MEANS 
AND VARIANCES 

In this section, the joint posterior distribution, given the break point k, of the p, (S = 

I , .  . . , S ) ,  A, and + together with the p,*,A*, and +* is presented, along with explicit 
formulae for the conditional posterior means and variances of the p,, given k, and 
expressions for the marginal density of the data set, with p,*, p,, A*, A, +*, and + 
integrated out. These expressions determine the posterior distribution of k. Finally, formu- 
lae for the posterior means and variances of the p, based on the full posterior distributions 
(i.e., of all parameters including k )  are derived, and from these the predictive mean and 
variance of the next observation in each time series are obtained. 

The joint posterior density of ( p ,A, +), given the after-break data y ,  is obtained from 
the model and prior specifications given in the previous section as 

The first factor of the right-hand side of (A. 1 )  is a slight modification of Box and Tiao 
[1973, (7.2.12)], reflecting knowledge of the grand mean. It is given by 

where j is the S-dimensional vector of after-break averages. The second factor is obtained 
as 
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where p ( y )  = S S p ( X ,  I$)p(yl A,  4)dX d+. The second factor in the numerator of the 
right-hand side of ( A . 3 ) comes from 

Combining p(yl  A ,  4) with the joint prior p ( h , 4) given by ( 3 . 4 ) , we obtain 

where I,  is the n X n identity and J ,  is the n X n matrix of ones. 
The integral of this expression, p ( y )  [or more correctly p ( y l n )  or ~ ( y l k ) ]is provided 

below; it is needed to get the posterior distribution of k:  

( 1  - + 1 - r ) r ( { ( v o+ v 1 ) / 2 )- ( 1  - r ) )r ) ( v o m o ) " ~ 1 2 T ( ( v 2 / 2 )  
p ( y l n )  = ~ r ~ ~ I ~ ~ ( v ~ / 2 ) ( v ~ r n ~" 1  -'+ 2 - 2 r ) 1 2+ v l m l ) ' " ~ ~ +  * ' ) I2  ( v 2 m 2 ) ( ~ 2 +  

where w = v 2 m 2 / ( v o m o+ v l m l + v 2 m 2 ) ,v ,= ( n  - 1)S ,  v2  = S ,  v l m l = C C ( y s t- j , .)*, 
v 2 m 2= n C , ( j ,  - and I,. represents the incomplete beta function. The symbols y,, 
and j , ,  denote elements and row averages, respectively, of the after-break data matrix y .  

The posterior mean and variance, given k ,  of the p., (s = 1 , . . . ,S )  may be obtained 
in a manner similar to the last paragraph of Box and Tiao (1973, Section 7 .2 .3 ) . We have 

ce(p..SlY)= 7 s .  - Ce(+lY)(7,. - Po), ( A . 5 )  

and 

where 

q = 1 ,  2 ;  and Var(+ly )  = % ( ~ $ ~ 1 y )- [%(+)y)l2.Note that, in all these expressions, 
conditioning on k is implied, since y is the after-break data matrix. 

To obtain the posterior distribution of k ,  we first note that p ( x l k )  = p ( y * l n * ) p ( y l n ) ,  
where n* = k - 1, n  = T - k + 1 ,  y* is the before-break data matrix, y is the after-break 
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data matrix, and the full data matrix x has been partitioned into y* and y according to the 
value of the break point k. Herep(y In) is given by ( A . 4 ) ,and fork > 1 ,  p(y* In*) is given 
by ( A . 4 )with asterisks on the quantities n, mo, m , ,  m2 ,  and v , ,defined for the before-break 
data set the same way the unasterisked quantities were defined for the after-break data set. 
For the case k = 1 we define p(y* In*) = 1 ,  since here p(xl k) = p ( y In). 

Now the posterior distribution of k, for k = 1 , 2 , . . . ,T, is obtained from 

The posterior mean and variance of the p, in the full analysis may now be determined. 
For example, we have 

where yk  = y is the after-break data, conditioned on k, and %(p, lyk)is given by ( A . 5 ) .  
Similarly 

The predictive mean of a new observation x, , , ,  , is the same as the posterior mean of 
p,. The predictive variance can be shown to be 

Thus all that is needed further is %(u21x11,. . . ,xST)= %{( l /A ) lx l,,. . . ,xsT}.This also 
may be obtained by conditioning on k and on 4. Because, for the one-way ANOVA model 
with n observations, the posterior distribution of A is a scaled chi-squared with vo + v l  + 
v2 degrees of freedom and scale factor 

it follows that 

so that, with m l  = m l ( y k )and m2= m 2 ( y k ) ,  

APPENDIX B. MODEL AND RESULTS WHEN THE PRIOR MEANS ARE NOT 
KNOWN IN ADVANCE 

The development of Section 3 was motivated by the application to high-school grading 
standards, where there is a built-in centering about the value pa = 0. In many situations 
such a centering may not exist. Here the grand mean before the break and the grand mean 
after the break may well differ. In this section we give the modifications to the theory that 
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follow if the grand mean p: before the break and grand mean po after the break are 
unknown instead of known. 

The prior distribution of the psand of the pfare as specified in Section 3.2 except that 
the hyperparameters p;, p,,, T * ~ ,and r2are now all unknown. In place of (3.3), (3.4), and 
(3.5) we have 

where 

and 

(1 - r){(i} 
vom; vo!2 

A*'VO-
A* + (" - 5)2)}l v 2  exp{T(vomz 

c* 
PB(P:, A*,+*) = (B.3) 


(:)(2ne*)1/2+*rr 

O < + r 1 ,  0 < + * 1 1 ,  A > o ,  A * > o ,  - w < ~ , < w ,  - w < ~ ; < w .  
The derivation of the posterior distributions of Appendix A is carried through with the 

pair of hyperparameters (A, 4) replaced by the triple (A, 4, b).These changes lead to the 
following expression replacing (A.4): 

where 

where j is the grand mean of the after-break data set, and v2, m2 have been changed to 
v2 = S - 1, v2m2= nCs( j s  - j)2,  respectively. If c is finite, a numerical integration is 
required to evaluate (B.5). As c gets large, the term c-' in nS+ + c-I becomes negligible 
and so does ( j  - 5 ) 2 { ~+ (nS+)-I)-', so that (B.4) approximates the form 

In (3.4) and (3.5), the limiting improper case r + 1 in the prior distribution of + 
presented a problem in (A.4) when we tried to compute p(xlk) = p(yln)p(y*Jn*) (see 
Section 3.3, last paragraph). A similar problem occurs in (B.6) when c 7w, because the 
factor c-I when k > 1 is much smaller than the corresponding factor c-5 when k = 1. If 
we allow this to stand, the likelihood (B.6) for k = 1 will be infinitely greater than the 
corresponding likelihood for any value of k > 1. This difficulty can be resolved in one of 
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two ways. Either we can keep c finite and do the numerical integration indicated by (B.5), 
or we can let c + co but put zero prior probability on the case k = 1. In this article we 
deal only with the latter option, for the sake of simplicity. Now k takes on the values 
2 , 3 , . . . ,T with any set of prior probabilities, andp(x)k)always contains a factor of c-'. 
This factor cancels out from numerator and denominator in the computation 

In this situation we can also choose the diffuse prior on + given by p(+) x + - I ,  0 < + 
5 1, if we wish. 

The formulae beginning with (A.5) for posterior and predictive means and variances 
hold for all versions of the model specifications of this section, except that the posterior 
moments of +, given the break point, are given as follows for the case c + co: 

E ( 4 q I ~ )  

i: v,,+ Vl + l V" + v ,  + I 

( I  - w)"B - + q + I - r ,  2 ~ q +- r ) ) ~ . ( : +  q +  I - r ,  2 (q  + I -
I 	 r ) )  

--
V" + Vl + I V? v,,+ v ,  + l 

w q ~i-:+ 1 - r ,  - (1 - r ) ) ~ , ,(z+ I - r ,  - ( 1  - r ) )
2 2 2 

Note that in this section the between-site degrees of freedom v2 and the between-site 
mean square mz are different from Appendix A. Here we have vz = S - 1 and vzmz = 

n C , ( j ,  - j . ) 2 .  
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